Dalton Transactions

PAPER

Check for updates

Cite this: *Dalton Trans.*, 2019, **48**, 14898

Elucidating the secondary effect in the Lewis acid mediated anodic shift of electrochemical oxidation of a Cu(μ) complex with a N₂O₂ donor unsymmetrical ligand⁺

Souvik Maity, Soumavo Ghosh (1)* and Ashutosh Ghosh (1)*

A metalloligand [CuL] (H₂L = N- α -methylsalicylidene-N'-salicylidene-1,3-propanediamine) was reacted with a series (Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Zn²⁺, Cd²⁺, Pr³⁺, Nd³⁺ and Sm³⁺) of redox-inactive metal ions (in excess) with different Lewis acidities in acetonitrile to form heterometallic complexes in situ. In the cases of K^+ and Zn^{2+} , single crystals were isolated from their respective solutions and solved. The complexes were found to be trinuclear with the phenoxido bridge between the redox-inactive metals and the copper center having closest equilibrium distance. In solution, some metal ions (Na⁺, K⁺, Mg²⁺ and Ca²⁺) formed predominantly 1:1 [CuL]: M^{n+} adducts whereas others did not. Spectroscopic studies revealed that both the energy and intensity of the LMCT band of [CuL] at 363 nm were influenced by the Lewis acidity of the guest metal ions. The blue shift and the hypochromic shift of this band showed a linear dependence on the Lewis acidity of the corresponding redox-inactive metal ions only for 1:1 adducts. A combined EPR and d-d transition spectral analysis of these 1:1 adducts in acetonitrile at 298 K indicates that there is a change in the coordination geometry around Cu(II) on proximal cation binding of free [CuL]. The correlation of the half wave potential ($E_{1/2}$) of the first oxidation of [CuL] with p K_a of the corresponding metal(aqua)ⁿ⁺ ion as a measure of its Lewis acidity revealed that the potentials were linearly dependent for 1:1 adducts whereas in the case of the other metal ions an unexpected deviation from linearity was observed. An incremental addition of water to some of these mixtures revealed a decrease in the corresponding oxidation peak potential with a concomitant increase in the molar absorptivity. The molar absorptivities of different mixtures with their corresponding $E_{1/2}$ values show a linear dependence with better correlation suggesting that the modulation of electron density around Cu(1) regulates the electrochemical oxidation of the metalloligand.

Received 15th August 2019, Accepted 7th September 2019 DOI: 10.1039/c9dt03323h

rsc.li/dalton

Introduction

One of the common structural features of active sites of natural redox active metalloproteins is the presence of redoxinactive metal ions in close proximity, as for instance, Ca^{2+} in a highly hydrated Mn_4 -oxygen evolving complex (OEC).^{1,2} It is now well known that Ca^{2+} controls the binding and activation

sanju.chem08@gmail.com

of a water substrate as well as the redox properties of the Mncluster of the OEC.^{3,4} These observations in natural systems open up a new way of activating a synthetic metal ion catalyst. For example, the addition of strongly Lewis acidic metal ions (Al³⁺ or Sc³⁺) in multiple equivalents causes a remarkable improvement in the efficiency of oxidation of sluggish high valent metal complex catalysts.^{5–8} In fact, the Lewis acid interaction by redox-inactive metal ions facilitates the rate of electron transfer with a positive shift of the reduction potential of the corresponding redox active metal complexes.9,10 To address the role of Ca²⁺ in the OEC and various redox-inactive Lewis acidic metal ions in synthetic models, Agapie et al.¹¹⁻¹⁵ demonstrated that the reduction potentials of the isostructural redox active heterometallic clusters containing a redox-inactive metal ion are linearly correlated with pK_a of the corresponding metal aqua ion as a measure of its Lewis acidity. Similar investigations by several other groups have also suggested this trend for different dinuclear species.^{16–19} All these results indi-

Department of Chemistry, University College of Science, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India. E-mail: ghosh_59@yahoo.com,

[†] Electronic supplementary information (ESI) available: Benesi–Hildebrand plot, representative ESI-mass spectrum, $\Delta \lambda_{\max}$ vs. pK_a plot, cyclic voltammetry and DPV analyses, UV-vis spectra, correlation of ΔE_{pa} vs. equiv. of water added and delta $\Delta \epsilon$ vs. equiv. of water added, ΔE_{pa} vs. $\Delta \epsilon$ correlation for incremental addition of aqueous acetonitrile, bond lengths and angles of complexes 1 and 2, some literature reports of redox potential vs. pK_a correlation diagrams. CCDC 1896197 and 1896198. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/C9DT03323H